On the meromorphic solutions of an equation of Hayman
نویسنده
چکیده
The behavior of meromorphic solutions of differential equations has been the subject of much study. Research has concentrated on the value distribution of meromorphic solutions and their rates of growth. The purpose of the present paper is to show that a thorough search will yield a list of all meromorphic solutions of a multi-parameter ordinary differential equation introduced by Hayman. This equation does not appear to be integrable for generic choices of the parameters so we do not find all solutions—only those that are meromorphic. This is achieved by combining Wiman–Valiron theory and local series analysis. Hayman conjectured that all entire solutions of this equation are of finite order. All meromorphic solutions of this equation are shown to be either polynomials or entire functions of order one. 2003 Elsevier Science (USA). All rights reserved.
منابع مشابه
On meromorphic solutions of certain type of difference equations
We mainly discuss the existence of meromorphic (entire) solutions of certain type of non-linear difference equation of the form: $f(z)^m+P(z)f(z+c)^n=Q(z)$, which is a supplement of previous results in [K. Liu, L. Z. Yang and X. L. Liu, Existence of entire solutions of nonlinear difference equations, Czechoslovak Math. J. 61 (2011), no. 2, 565--576, and X. G. Qi...
متن کاملAll Admissible Meromorphic Solutions of Hayman’s Equation
We find all nonrational meromorphic solutions of the equation ww′′ − (w′)2 = α(z)w + β(z)w′ + γ (z), where α, β, and γ are rational functions of z. In so doing, we answer a question of Hayman by showing that all such solutions have finite order. Apart from special choices of the coefficient functions, the general solution is not meromorphic and contains movable branch points. For some choices f...
متن کاملGrowth of meromorphic solutions for complex difference equations of Malmquist type
In this paper, we give some necessary conditions for a complex difference equation of Malmquist type $$sum^n_{j=1}f(z+c_j)=frac{P(f(z))}{Q(f(z))},$$ where $n(in{mathbb{N}})geq{2}$, and $P(f(z))$ and $Q(f(z))$ are relatively prime polynomials in $f(z)$ with small functions as coefficients, admitting a meromorphic function of finite order. Moreover, the properties of finite o...
متن کاملON THE NEVANLINNA CHARACTERISTIC OF f(z + η) AND DIFFERENCE EQUATIONS IN THE COMPLEX PLANE
and T (r, f), which is only true for finite order meromorphic functions. We have also obtained the proximity function and pointwise estimates of f(z+η)/f(z) which is a discrete version of the classical logarithmic derivative estimates of f(z). We apply these results to give new growth estimates of meromorphic solutions to higher order linear difference equations. This also allows us to solve an...
متن کاملOn the Growth of Logarithmic Differences, Difference Quotients and Logarithmic Derivatives of Meromorphic Functions† Yik-man Chiang and Shao-ji Feng
Abstract. A crucial ingredient in the recent discovery by Ablowitz, Halburd, Herbst and Korhonen [2], [15] that a connection exists between discrete Painlevé equations and (finite order) Nevanlinna theory is an estimate of the integrated average of log |f(z + 1)/f(z)| on |z| = r. We obtained essentially the same estimate in our previous paper [8] independent of Halburd et al [14]. We continue o...
متن کامل